王 涛
教授,博士生导师。2006年本科毕业于bwin必赢地球科学系,地质学专业;2011年在中国科学院大气物理研究所获得气象学理学博士学位;此后留研究所工作,先后任助理研究员、副研究员、研究员及气候变化研究中心常务副主任。主要从事古气候模拟和年代—多年代气候变化,尤其专注于外强迫对亚洲—太平洋气候的影响及机理研究。曾主持国家基金委青年基金、面上项目、国际合作与交流项目和国家重点研发计划课题等,2018年获国家基金委优青项目资助。课题组长期诚聘博士后、也欢迎有意攻读博士和硕士学位的同学来信咨询。
邮箱: wangtao61@nju.edu.cn
教育经历
09/2006 - 01/2011 | 中国科学院大气物理研究所 气象学理学博士 |
09/2002 - 06/2006 | bwin必赢地球科学系 地质学理学学士 |
工作经历
11/2024 - 现在 | bwin必赢 教授 |
08/2022 - 10/2024 | 中国科学院大气物理研究所 气候变化研究中心 常务副主任 |
02/2020 - 10/2024 | 中国科学院大气物理研究所 研究员 |
05/2013 - 01/2020 | 中国科学院大气物理研究所 副研究员 |
04/2011 - 06/2011 | 挪威卑尔根大学地球物理研究所 访问学者 |
02/2011 - 04/2013 | 中国科学院大气物理研究所 助理研究员 |
03/2010 - 05/2010 | 挪威卑尔根大学地球物理研究所 访问学者 |
研究方向
古气候模拟,东亚季风,年代际及长尺度气候变化,外强迫气候效应
学术兼职
《地理科学》编委
主要科研项目
国家自然科学基金创新研究群体项目:年代际气候变化动力学及预测(42221004,2023.01-2027.12),骨干
国家自然科学基金优秀青年科学基金项目:古气候和年代际气候变化机制研究(41822502,2019.01-2021.12),主持
国家重点研发计划课题:多时间尺度气候—水文变化机制(2018.05-2023.04),主持
国家自然科学基金重大项目:北极海—冰—气系统对冬季欧亚大陆极端天气、气候事件的影响及机理
(41790472,2018.01-2022.12),骨干
国家重点研发计划项目:全球增暖1.5℃下东亚气候系统的响应及其情景预估(2017.07-2022.06),骨干
国家自然科学基金国际(地区)合作与交流项目:季节—年代际尺度区域间气候相互作用对提高气候预测的研究
(41661144005,2016.06-2020.05),主持
国家自然科学基金面上项目:近几十年来东亚冬季风年代际尺度减弱、增强的机制及归因研究
(41575086,2016.01-2019.12),主持
国家自然基金青年科学基金项目:末次盛冰期沙尘和海盐气溶胶气候效应及其对东亚气候影响
(41205051,2013.01-2015.12),主持
发表论文
[1] Qin, Z.J., T. Wang*, Y. Gao, Y.H. Fu, 2024: MPI-ESM Grand Ensemble-simulated influence of the Mount Pinatubo volcanic eruption on winter climate over the mid-to high-latitude Northern Hemisphere continents. International Journal of Climatology, https://doi.org/10.1002/joc.8719. [2] Qin, Z.J., T. Wang*, H.P. Chen, Y. Gao, 2024: Performance of CMIP5 and CMIP6 models in reproducing the Interdecadal Pacific Oscillation and its global impacts. International Journal of Climatology, 44, 3742-3765. https://doi.org/10.1002/joc.8548. [3] Chen, F., S.J. Wang, Q.J. Dong, J. Esper, U. Büntgen, D. Meko, H.W. Linderholm, T. Wang, W.P. Yue, X.E. Zhao, M. Hadad, Á. González-Reyes, F.H. Chen, 2024: Role of Pacific Ocean climate in regulating runoff in the source areas of water transfer projects on the Pacific Rim. npj Climate and Atmospheric Science, 7, 153. https://doi.org/10.1038/s41612-024-00706-1. [4] Sun, Y.K., R. Zhu, T. Wang, 2024: Projection of extreme climate change in the Asian arid region and the Tibetan Plateau in the early and middle 21st century based on NEX-GDDP-CMIP6. Atmospheric and Oceanic Science Letters. https://doi.org/10.1016/j.aosl.2024.100534. [5] Chen, F.* #, T. Wang#, X. Zhao, J. Esper, F. C. Ljunggvist, U. Büntgen, H. W. Linderholm, D. Meko, H. N. Xu, W. P. Yue, S. J. Wang, Y. J. Yuan, J. Y. Zheng, W. Pan, F. Roig, M. Hadad, M. Hu, J. C. Wei, F. H. Chen, 2024: Coupled Pacific Rim megadroughts contributed to the fall of the Ming Dynasty’s capital in 1644 CE. Science Bulletin, 69, 3106-3114. https://doi.org/10.1016/j.scib.2024.04.029. (#共同第一作者) [6] Xiang, Y.Y., T. Wang*, H.J. Wang, H.N. Xu, 2024: Influence of the Pacific Decadal Oscillation on winter temperatures and precipitation over the southern Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 129, e2023JD038653. https://doi.org/10.1029/2023JD038653. [7] Xu, H., T. Wang*, H. Wang, 2024: Interdecadal Pacific Oscillation responsible for the linkage of decadal changes in precipitation/moisture in arid central Asia and humid Asian monsoon region during the last millennium. Climate of the Past, 20, 107-119. https://doi.org/10.5194/cp-20-107-2024. [8] Xu, H., T. Wang*, H. Wang, S. Chen, J. Chen, 2023: External forcings caused the tripole trend of Asian precipitation during the Holocene. Journal of Geophysical Research: Atmospheres, 128, e2023JD039460. [9] Xiang, Y.Y., T. Wang*, H.N. Xu, H.J. Wang, 2023: Contribution of external forcing to summer precipitation trends over the Qinghai–Tibet Plateau and Southwest China. Atmospheric and Oceanic Science Letters, 16, 100388. doi: 10.1016/j.aosl.2023.100388. [10] Wang, T.*, S.Y. Yin, W. Hua, H.J. Wang, F.F. Luo, J.P. Miao, Y.H. Fu, 2023: Decadal variability of extreme high temperature in mid- and high-latitude Asia and its associated North Atlantic air–sea interaction. Climate Dynamics, 61, 4587–4601. https://doi.org/10.1007/s00382-023-06823-6. [11] Ma, S., T. Wang, T.T. Xie, L. Gao, B. Wei, J.H. Chen, F.H. Chen, W. Huang, 2023: Interdecadal Pacific Variability dominated the decadal variation of cold season precipitation in arid West Asia. Atmospheric Research, 288, 106730. [12] Xu, C., J.H. Ma, J.Q. Sun, C. You, Y.M. Ma, H.J. Wang, T. Wang, 2022: Links between winter dust over the Tibetan Plateau and preceding autumn sea ice variability in the Barents and Kara Seas. Advances in Climate Change Research, 13, 896-908. https://doi.org/10.1016/j.accre.2022.10.003. [13] Chen, S.Q., J.H. Chen, F.Y. Lv, X.K. Liu, T. Wang, J.B. Liu, J.Z. Hou, F.H. Chen, 2022: Holocene moisture variations in arid central Asia: Reassessment and reconciliation. Quaternary Science Reviews, 297, 107821. [14] Wang, T.*, H.N. Xu, D.B. Jiang, J.Q. Yao, 2022: Mechanisms of reduced mid-Holocene precipitation in arid central Asia as simulated by PMIP3/4 models. Journal of Geophysical Research: Atmospheres, 127, e2021JD036153. https://doi.org/10.1029/2021JD036153. [15] Miao, J.P., T. Wang*, D.B. Jiang, 2022: Ozone-aerosol and land use reversed temperature increase over some northern mid-latitude regions between the 20th century and the Little Ice Age based on the CESM-LME. The Holocene, 32, 1251-1259. https://doi.org/10.1177/09596836211041734. [16] Chen, D., Y. Gao, Y. Zhang, T. Wang, 2022: Effects of spring Arctic sea ice on summer drought in the middle and high latitudes of Asia. Atmospheric and Oceanic Science Letters, 15, 100138. https://doi.org/10.1016/j.aosl.2021.100138. [17] Gao, Y., D. Chen, H.J. Wang, J.H. Ma, T. Wang, 2022: Effect of interdecadal variation in southern Indian Ocean SST on the relationship between ENSO and summer precipitation in the Asian-Pacific monsoon region. Journal of Geophysical Research: Atmospheres, 127, e2021JD036151. https://doi.org/10.1029/2021JD036151. [18] Xie, T.T., W. Huang, S. Feng, T. Wang, Y. Liu, J.H. Chen, F.H. Chen, 2022: Mechanism of winter precipitation variations in the southern arid Central Asia. International Journal of Climatology, 42, 4477-4490. https://doi.org/10.1002/joc.7480. [19] Zhang, Y., M.Q. Zhang, J.H. Ma, D. Chen, T. Wang, 2022: Possible contribution of Arctic sea ice decline to intense warming over Siberia in June. Atmospheric and Oceanic Science Letters, 15, 100132. https://doi.org/10.1016/j.aosl.2021.100132. [20] Fu, Y.H., Z.D. Lin, T. Wang, 2021: Preconditions for CMIP6 models to reproduce the relationship between wintertime ENSO and subsequent East Asian summer rainfall. Climate Research, 84, 133-144. [21] Wang, T.*, J.P. Miao, H.J. Wang, J.Q. Sun, 2021: Influence of Strong Tropical Volcanic Eruptions on Daily Temperature and Precipitation Extremes Across the Globe. Journal of Meteorological Research, 35, 428-443. [22] Fu, Y.H., Z.D. Lin, T. Wang, 2021: Simulated Relationship between Wintertime ENSO and East Asian Summer Rainfall: From CMIP3 to CMIP6. Advances in Atmospheric Sciences, 38, 221-236. [23] Wang, L.T., Y.Q. Gao, D. Guo, T. Wang, Y. Zhang, W. Hua, 2021: Impact of global sea surface temperature on the recent early winter Arctic tropospheric warming in coordinated large ensemble simulations. Atmospheric and Oceanic Science Letters, 14, 100010. https://doi.org/10.1016/j.aosl.2020.100010. [24] Yin, S.Y., T. Wang*, W. Hua, J.P. Miao, Y.Q. Gao, Y.H. Fu, D. Matei, E. Tyrlis, D. Chen, 2020: Mid-summer surface air temperature and its internal variability over China at 1.5° C and 2° C global warming. Advances in Climate Change Research, 11, 185-197. [25] Xu, H.N., T. Wang*, H.J. Wang, J.P. Miao, J.H. Chen, S.Q. Chen, 2020: The PMIP3 Simulated Climate Changes over Arid Central Asia during the Mid-Holocene and Last Glacial Maximum. Acta Geologica Sinica (English Edition), 94, 725–742. [26] Miao, J.P., T. Wang*, D. Chen, 2020: More Robust Changes in the East Asian Winter Monsoon from 1.5° C to 2.0° C Global Warming Targets. International Journal of Climatology, 40, 4731–4749. https://doi.org/10.1002/joc.6485. [27] Hu, Y.Y., Y. Xia, Z.Y. Liu, Y. Wang, Z. Lu, T. Wang, 2020: Distorted Pacific-North American Teleconnection at the Last Glacial. Climate of the Past, 16, 199-209. https://doi.org/10.5194/cp-16-199-2020. [28] Miao, J.P., T. Wang*, 2020: Decadal variations of the East Asian winter monsoon in recent decades. Atmospheric Science Letters, 21, e960. [29] Miao, J.P., T. Wang*, H. J. Wang, 2020: Interdecadal variations of the East Asian winter monsoon in CMIP5 preindustrial simulations. Journal of Climate, 33, 559-575. doi:10.1175/JCLI-D-19-0148.1. [30] Liu, Y., Y. L. Zhu, H. J. Wang, Y. Q. Gao, J. Q. Sun, T. Wang, J. H. Ma, A. Yurova, F. Li, 2020: Role of autumn Arctic Sea ice in the subsequent summer precipitation variability over East Asia. International Journal of Climatology, 40, 706-722. https://doi.org/10.1002/joc.6232. [31] 陈发虎, 董广辉, 陈建徽, 郜永祺, 黄伟, 王涛, 陈圣乾, 侯居峙, 2019: 亚洲中部干旱区气候变化与丝路文明变迁研究:进展与问题, 地球科学进展, 34, 561-572. Chen F.H.,G.H. Dong,J.H. Chen,Y.Q. Gao, W. Huang, T. Wang, S. Q. Chen, and J. Z. Hou, 2019: Climate change and silk road civilization evolution in arid central Asia:Progress and issues. Advances in Earth Science, 34, 561-572. [32] Koenigk, T., Y. Gao, G. Gastineau, N. Keenlyside, T. Nakamura, F. Ogawa, Y. Orsolini, V. Semenov, L. Suo, T. Tian, T. Wang, J. J. Wettstein, S. Yang, 2019: Impact of Arctic sea ice variations on winter temperature anomalies in northern hemispheric land areas. Climate Dynamics, 52, 3111-3137. https://doi.org/10.1007/s00382-018-4305-1. [33] Miao, J. P., T. Wang*, H. J. Wang, Y. L. Zhu, J. Q. Sun, 2018: Interdecadal weakening of the East Asian winter monsoon in the mid-1980s: the roles of external forcings. Journal of Climate, 31, 8985-9000. doi:10.1175/JCLI-D-17-0868.1. [34] Zhu, Y. L., H. J. Wang, T. Wang, D. Guo, 2018: Extreme spring cold spells in North China during1961–2014 and the evolving processes. Atmospheric and Oceanic Science Letters, 11: 432-437. doi: 10.1080/16742834.2018.1514937. [35] Ogawa, F., N. Keenlyside, Y. Q. Gao, T. Koenigk, S. Yang, L. L. Suo, T. Wang, G. Gastineau, T. Nakamura, H. N. Cheung, N. E. Omrani, J. Ukita, V. Semenov, 2018: Evaluating impacts of recent Arctic sea-ice loss on the northern hemisphere winter climate change. Geophysical Research Letters, 45, 3255-3263. doi: 10.1002/2017GL076502. [36] Miao, J. P., T. Wang*, H. J. Wang, Y. Q. Gao, 2018: Influence of low-frequency solar forcing on the East Asian winter monsoon based on HadCM3 and observations. Advances in Atmospheric Sciences, 35, 1205-1215. doi: 10.1007/s00376-018-7229-0. [37] Wang, T.*, J. P. Miao, J. Q. Sun, Y. H. Fu, 2018: Intensified East Asian summer monsoon and associated precipitation mode shift under the 1.5 °C global warming target. Advances in Climate Change Research, 9, 102-111. doi: 10.1016/j.accre.2017.12.002. [38] Miao, J. P., T. Wang*, H. J. Wang, J. Q. Sun, 2018: Interannual weakening of the tropical Pacific Walker circulation due to strong tropical volcanism. Advances in Atmospheric Sciences, 35, 645-658. doi: 10.1007/s00376-017-7134-y. [39] Wang, T.*, D. Guo, Y. Q. Gao, H. J. Wang, F. Zheng, Y. L. Zhu, J. P. Miao, Y. Y. Hu, 2018: Modulation of ENSO evolution by strong tropical volcanic eruptions. Climate Dynamics, 51, 2433-2453. https://doi.org/10.1007/s00382-017-4021-2. [40] Wang, T.*, J. P. Miao, 2018: Twentieth-century Pacific Decadal Oscillation simulated by CMIP5 coupled models. Atmospheric and Oceanic Science Letters, 11, 94-101. [41] Zhu, Y.L., T. Wang, H. J. Wang, 2016: Relative contribution of the anthropogenic forcing and natural variability to the interdecadal shift of climate during the late 1970s and 1990s. Science Bulletin, 61, 416-424. [42] Zhu, Y. L., T. Wang, and J. H. Ma, 2016: Influence of internal decadal variability on the summer rainfall in eastern China as simulated by CCSM4. Advances in Atmospheric Sciences, 33, 706-714. [43] Zhu, Y. L., and T. Wang, 2016: The relationship between the Arctic Oscillation and ENSO as simulated by CCSM4. Atmospheric and Oceanic Science Letters, 9, 198-203. [44] Miao, J. P., T. Wang*, Y. L. Zhu, J. Z. Min, H. J. Wang, D. Guo, 2016: Response of the East Asian winter monsoon to strong tropical volcanic eruptions. Journal of Climate, 29, 5041-5057. [45] Zhu, Y. L., H. J. Wang, J. H. Ma, T. Wang, J. Q. Sun, 2015: Contribution of the phase transition of Pacific Decadal Oscillation to the late 1990s’ shift in East China summer rainfall. Journal of Geophysical Research: Atmospheres, 120, 8817-8827. [46] Yu, E.T., T. Wang, Y. Q. Gao, and W. L. Xiang, 2014: Precipitation Pattern of the Mid-Holocene Simulated by a High-Resolution Regional Climate Model. Advances in Atmospheric Sciences, 31, 962-971. [47] Ge, J.Y., Z. T. Guo, D. Zhao, Y. Zhang, T. Wang, L. Yi, C. L. Deng, 2014: Spatial variations in paleowind direction during the last glacial period in north China reconstructed from variations in the anisotropy of magnetic susceptibility of loess deposits. Tectonophysics, 629, 353-361. [48] Wang, T.*, and H.J. Wang, 2013: Mid-Holocene Asian summer climate and its responses to cold ocean surface simulated in the PMIP2 OAGCMs experiments. Journal of Geophysical Research: Atmospheres, 118, 4117-4128. [49] Wang, T.*, Y. Liu, and W. Huang, 2013: Last Glacial Maximum Sea Surface Temperatures: A Model-Data Comparison. Atmospheric and Oceanic Science Letters, 6, 233-239. [50] Wang, T., H. J. Wang, O. H. Otterå, Y. Q. Gao, L. L. Suo, T. Furevik, and L. Yu, 2013: Anthropogenic agent implicated as a prime driver of shift in precipitation in eastern China in the late 1970s. Atmospheric Chemistry and Physics, 13, 12433-12450. [51] Wang, T.*, O.H. Otterå, Y.Q. Gao, and H.J. Wang, 2012: The response of the North Pacific Decadal Variability to strong tropical volcanic eruptions. Climate Dynamics, 39, 2917-2936. [52] Jiang, D., X. Lang, Z. Tian, and T. Wang, 2012: Considerable model–data mismatch in temperature over China during the mid-Holocene: Results of PMIP simulations. Journal of Climate, 25, 4135-4153. [53] Wang, T.*, H.J. Wang, and D.B. Jiang, 2010: Mid-Holocene East Asian summer climate as simulated by the PMIP2 models. Palaeogeography, Palaeoclimatology, Palaeoecology, 288, 93-102. [54] 王会军, 王涛, 姜大膀, 富元海, 2009: 我国气候变化将比模式预期的小吗?第四纪研究, 29, 1011-1014. [55] 王涛, 徐鸣洁, 王良书, 刘绍文, 胡旭芝, 2007: 鄂尔多斯及邻区航磁异常特征及其大地构造意义. 地球物理学报, 50, 163-170. Wang, T., M. J. Xu, L. S. Wang, S. W. Liu, and X. Z. Hu, 2007: Aeromagnetic anomaly analysis of Ordos and adjacent regions and its tectonic implications. Chinese Journal of Geophysics, 50, 158-166. |